Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.405
1.
Vis Neurosci ; 41: E002, 2024 May 10.
Article En | MEDLINE | ID: mdl-38725382

Animal models of retinal degeneration are critical for understanding disease and testing potential therapies. Inducing degeneration commonly involves the administration of chemicals that kill photoreceptors by disrupting metabolic pathways, signaling pathways, or protein synthesis. While chemically induced degeneration has been demonstrated in a variety of animals (mice, rats, rabbits, felines, 13-lined ground squirrels (13-LGS), pigs, chicks), few studies have used noninvasive high-resolution retinal imaging to monitor the in vivo cellular effects. Here, we used longitudinal scanning light ophthalmoscopy (SLO), optical coherence tomography, and adaptive optics SLO imaging in the euthermic, cone-dominant 13-LGS (46 animals, 52 eyes) to examine retinal structure following intravitreal injections of chemicals, which were previously shown to induce photoreceptor degeneration, throughout the active season of 2019 and 2020. We found that iodoacetic acid induced severe pan-retinal damage in all but one eye, which received the lowest concentration. While sodium nitroprusside successfully induced degeneration of the outer retinal layers, the results were variable, and damage was also observed in 50% of contralateral control eyes. Adenosine triphosphate and tunicamycin induced outer retinal specific damage with varying results, while eyes injected with thapsigargin did not show signs of degeneration. Given the variability of damage we observed, follow-up studies examining the possible physiological origins of this variability are critical. These additional studies should further advance the utility of chemically induced photoreceptor degeneration models in the cone-dominant 13-LGS.


Retinal Cone Photoreceptor Cells , Retinal Degeneration , Sciuridae , Tomography, Optical Coherence , Animals , Retinal Degeneration/chemically induced , Retinal Degeneration/pathology , Retinal Cone Photoreceptor Cells/pathology , Retinal Cone Photoreceptor Cells/drug effects , Disease Models, Animal , Intravitreal Injections , Ophthalmoscopy , Nitroprusside/pharmacology , Female , Male
2.
Sci Rep ; 14(1): 10498, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714794

Prominin 1 (PROM1) is a pentaspan transmembrane glycoprotein localized on the nascent photoreceptor discs. Mutations in PROM1 are linked to various retinal diseases. In this study, we assessed the role of PROM1 in photoreceptor biology and physiology using the PROM1 knockout murine model (rd19). Our study found that PROM1 is essential for vision and photoreceptor development. We found an early reduction in photoreceptor response beginning at post-natal day 12 (P12) before eye opening in the absence of PROM1 with no apparent loss in photoreceptor cells. However, at this stage, we observed an increased glial cell activation, indicative of cell damage. Contrary to our expectations, dark rearing did not mitigate photoreceptor degeneration or vision loss in PROM1 knockout mice. In addition to physiological defects seen in PROM1 knockout mice, ultrastructural analysis revealed malformed outer segments characterized by whorl-like continuous membranes instead of stacked disks. In parallel to the reduced rod response at P12, proteomics revealed a significant reduction in the levels of protocadherin, a known interactor of PROM1, and rod photoreceptor outer segment proteins, including rhodopsin. Overall, our results underscore the indispensable role of PROM1 in photoreceptor development and maintenance of healthy vision.


AC133 Antigen , Mice, Knockout , Animals , Mice , AC133 Antigen/metabolism , AC133 Antigen/genetics , Retinal Photoreceptor Cell Outer Segment/metabolism , Retinal Rod Photoreceptor Cells/metabolism , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Rhodopsin/metabolism , Rhodopsin/genetics , Photoreceptor Cells, Vertebrate/metabolism
3.
Front Immunol ; 15: 1374617, 2024.
Article En | MEDLINE | ID: mdl-38665911

Blindness or vision loss due to neuroretinal and photoreceptor degeneration affects millions of individuals worldwide. In numerous neurodegenerative diseases, including age-related macular degeneration, dysregulated immune response-mediated retinal degeneration has been found to play a critical role in the disease pathogenesis. To better understand the pathogenic mechanisms underlying the retinal degeneration, we used a mouse model of systemic immune activation where we infected mice with lymphocytic choriomeningitis virus (LCMV) clone 13. Here, we evaluated the effects of LCMV infection and present a comprehensive discovery-based proteomic investigation using tandem mass tag (TMT) labeling and high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS). Changes in protein regulation in the posterior part of the eye, neuroretina, and RPE/choroid were compared to those in the spleen as a secondary lymphoid organ and to the kidney as a non-lymphoid but encapsulated organ at 1, 8, and 28 weeks of infection. Using bioinformatic tools, we found several proteins responsible for maintaining normal tissue homeostasis to be differentially regulated in the neuroretina and the RPE/choroid during the degenerative process. Additionally, in the organs we observed, several important protein pathways contributing to cellular homeostasis and tissue development were perturbed and associated with LCMV-mediated inflammation, promoting disease progression. Our findings suggest that the response to a systemic chronic infection differs between the neuroretina and the RPE/choroid, and the processes induced by chronic systemic infection in the RPE/choroid are not unlike those induced in non-immune-privileged organs such as the kidney and spleen. Overall, our data provide detailed insight into several molecular mechanisms of neuroretinal degeneration and highlight various novel protein pathways that further suggest that the posterior part of the eye is not an isolated immunological entity despite the existence of neuroretinal immune privilege.


Disease Models, Animal , Lymphocytic choriomeningitis virus , Proteomics , Retinal Degeneration , Animals , Mice , Proteomics/methods , Retinal Degeneration/immunology , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Lymphocytic choriomeningitis virus/immunology , Mice, Inbred C57BL , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/virology , Tandem Mass Spectrometry , Proteome , Retina/immunology , Retina/metabolism , Retina/pathology , Chromatography, Liquid , Choroid/immunology , Choroid/pathology , Choroid/metabolism
4.
Exp Eye Res ; 242: 109879, 2024 May.
Article En | MEDLINE | ID: mdl-38570182

Because the selective estrogen receptor modulator tamoxifen was shown to be retina-protective in the light damage and rd10 models of retinal degeneration, the purpose of this study was to test whether tamoxifen is retina-protective in a model where retinal pigment epithelium (RPE) toxicity appears to be the primary insult: the sodium iodate (NaIO3) model. C57Bl/6J mice were given oral tamoxifen (in the diet) or the same diet lacking tamoxifen, then given an intraperitoneal injection of NaIO3 at 25 mg/kg. The mice were imaged a week later using optical coherence tomography (OCT). ImageJ with a custom macro was utilized to measure retinal thicknesses in OCT images. Electroretinography (ERG) was used to measure retinal function one week post-injection. After euthanasia, quantitative real-time PCR (qRT-PCR) was performed. Tamoxifen administration partially protected photoreceptors. There was less photoreceptor layer thinning in OCT images of tamoxifen-treated mice. qRT-PCR revealed, in the tamoxifen-treated group, less upregulation of antioxidant and complement factor 3 mRNAs, and less reduction in the rhodopsin and short-wave cone opsin mRNAs. Furthermore, ERG results demonstrated preservation of photoreceptor function for the tamoxifen-treated group. Cone function was better protected than rods. These results indicate that tamoxifen provided structural and functional protection to photoreceptors against NaIO3. RPE cells were not protected. These neuroprotective effects suggest that estrogen-receptor modulation may be retina-protective. The fact that cones are particularly protected is intriguing given their importance for human visual function and their survival until the late stages of retinitis pigmentosa. Further investigation of this protective pathway could lead to new photoreceptor-protective therapeutics.


Disease Models, Animal , Electroretinography , Iodates , Mice, Inbred C57BL , Retinal Degeneration , Tamoxifen , Tomography, Optical Coherence , Animals , Iodates/toxicity , Mice , Tomography, Optical Coherence/methods , Tamoxifen/pharmacology , Retinal Degeneration/prevention & control , Retinal Degeneration/chemically induced , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , Real-Time Polymerase Chain Reaction , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/pathology , Rhodopsin/metabolism , Rhodopsin/genetics , Selective Estrogen Receptor Modulators/pharmacology , RNA, Messenger/genetics , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/pathology , Retinal Pigment Epithelium/metabolism , Rod Opsins/metabolism
5.
Biomed Pharmacother ; 174: 116538, 2024 May.
Article En | MEDLINE | ID: mdl-38579401

Glaucoma is considered a neurodegenerative disease characterized by progressive visual field defects that may lead to blindness. Although controlling intraocular pressure (IOP) is the mainstay of glaucoma treatment, some glaucoma patients have unmet needs due to unclear pathogenic mechanisms. Recently, there has been growing evidence that neuroinflammation is a potential target for the development of novel antiglaucoma agents. In this study, we investigated the protective effects and cellular mechanisms of H7E, a novel small molecule inhibits HDAC8, using in vitro and in vivo glaucoma-like models. Importantly, H7E mitigated extracellular MMP-9 activity and MCP-1 levels in glutamate- or S100B-stimulated reactive Müller glia. In addition, H7E inhibited the upregulation of inflammation- and proliferation-related signaling pathways, particularly the ERK and JNK MAPK pathways. Under conditions of oxidative damage, H7E prevents retinal cell death and reduces extracellular glutamate released from stressed Müller glia. In a mouse model of NMDA-induced retinal degeneration, H7E alleviated functional and structural defects within the inner retina as assessed by electroretinography and optical coherence tomography. Our results demonstrated that the newly identified compound H7E protects against glaucoma damage by specifically targeting HDAC8 activity in the retina. This protective effect is attributed to the inhibition of Müller glial activation and the prevention of retinal cell death caused by oxidative stress.


Ependymoglial Cells , Glaucoma , Histone Deacetylase Inhibitors , Histone Deacetylases , Mice, Inbred C57BL , Oxidative Stress , Animals , Oxidative Stress/drug effects , Glaucoma/drug therapy , Glaucoma/metabolism , Glaucoma/pathology , Histone Deacetylase Inhibitors/pharmacology , Ependymoglial Cells/drug effects , Ependymoglial Cells/metabolism , Ependymoglial Cells/pathology , Mice , Histone Deacetylases/metabolism , Retina/drug effects , Retina/metabolism , Retina/pathology , Disease Models, Animal , Neuroprotective Agents/pharmacology , Male , Retinal Degeneration/drug therapy , Retinal Degeneration/pathology , Retinal Degeneration/metabolism , Retinal Degeneration/prevention & control
6.
Exp Eye Res ; 242: 109852, 2024 May.
Article En | MEDLINE | ID: mdl-38460719

Oxidative stress plays a pivotal role in the pathogenesis of several neurodegenerative diseases. Retinal degeneration causes irreversible death of photoreceptor cells, ultimately leading to vision loss. Under oxidative stress, the synthesis of bioactive sphingolipid ceramide increases, triggering apoptosis in photoreceptor cells and leading to their death. This study investigates the effect of L-Cycloserine, a small molecule inhibitor of ceramide biosynthesis, on sphingolipid metabolism and the protection of photoreceptor-derived 661W cells from oxidative stress. The results demonstrate that treatment with L-Cycloserine, an inhibitor of Serine palmitoyl transferase (SPT), markedly decreases bioactive ceramide and associated sphingolipids in 661W cells. A nontoxic dose of L-Cycloserine can provide substantial protection of 661W cells against H2O2-induced oxidative stress by reversing the increase in ceramide level observed under oxidative stress conditions. Analysis of various antioxidant, apoptotic and sphingolipid pathway genes and proteins also confirms the ability of L-Cycloserine to modulate these pathways. Our findings elucidate the generation of sphingolipid mediators of cell death in retinal cells under oxidative stress and the potential of L-Cycloserine as a therapeutic candidate for targeting ceramide-induced degenerative diseases by inhibiting SPT. The promising therapeutic prospect identified in our findings lays the groundwork for further validation in in-vivo and preclinical models of retinal degeneration.


Apoptosis , Ceramides , Cycloserine , Oxidative Stress , Sphingolipids , Oxidative Stress/drug effects , Cycloserine/pharmacology , Animals , Ceramides/metabolism , Ceramides/pharmacology , Mice , Sphingolipids/metabolism , Apoptosis/drug effects , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/pathology , Serine C-Palmitoyltransferase/metabolism , Serine C-Palmitoyltransferase/antagonists & inhibitors , Hydrogen Peroxide/toxicity , Hydrogen Peroxide/pharmacology , Cell Line , Retinal Degeneration/metabolism , Retinal Degeneration/prevention & control , Retinal Degeneration/pathology , Retinal Degeneration/drug therapy , Blotting, Western , Enzyme Inhibitors/pharmacology , Cell Survival/drug effects
7.
Exp Eye Res ; 240: 109826, 2024 Mar.
Article En | MEDLINE | ID: mdl-38340947

Retinitis pigmentosa (RP) is an inherited retinal disorder characterized by the degeneration of photoreceptors. RhoP23H/+ mice, which carry a Pro23His mutation in the RHODOPSIN (Rho) gene, are one of the most studied animal models for RP. However, except for the photoreceptors, other retinal neural cells have not been fully investigated in this model. Here, we record the temporal changes of the retina by optical coherence tomography (OCT) imaging of the RhoP23H/+ mice, from early to mid-phase of retinal degeneration. Based on thickness analysis, we identified a natural retinal thickness adaption in wild-type mice during early adulthood and observed morphological compensation of the inner retina layer to photoreceptor degeneration in the RhoP23H/+ mice, primarily on the inner nuclear layer (INL). RhoP23H/+ mice findings were further validated via: histology showing the negative correlation of INL and ONL thicknesses; as well as electroretinogram (ERG) showing an increased b-wave to a-wave ratio. These results unravel the sequential morphologic events in this model and suggest a better understanding of retinal degeneration of RP for future studies.


Retinal Degeneration , Retinitis Pigmentosa , Mice , Animals , Retinal Degeneration/diagnosis , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Rhodopsin/genetics , Retina/pathology , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/pathology , Electroretinography , Disease Models, Animal
8.
Sci Rep ; 14(1): 3010, 2024 02 06.
Article En | MEDLINE | ID: mdl-38321224

Activated microglia have been implicated in the pathogenesis of age-related macular degeneration (AMD), diabetic retinopathy, and other neurodegenerative and neuroinflammatory disorders, but our understanding of the mechanisms behind their activation is in infant stages. With the goal of identifying novel genes associated with microglial activation in the retina, we applied a semiquantitative fundus spot scoring scale to an unbiased, state-of-the-science mouse forward genetics pipeline. A mutation in the gene encoding the E3 ubiquitin ligase Herc3 led to prominent accumulation of fundus spots. CRISPR mutagenesis was used to generate Herc3-/- mice, which developed prominent accumulation of fundus spots and corresponding activated Iba1 + /CD16 + subretinal microglia, retinal thinning on OCT and histology, and functional deficits by Optomotory and electrophysiology. Bulk RNA sequencing identified activation of inflammatory pathways and differentially expressed genes involved in the modulation of microglial activation. Thus, despite the known expression of multiple E3 ubiquitin ligases in the retina, we identified a non-redundant role for Herc3 in retinal homeostasis. Our findings are significant given that a dysregulated ubiquitin-proteasome system (UPS) is important in prevalent retinal diseases, in which activated microglia appear to play a role. This association between Herc3 deficiency, retinal microglial activation and retinal degeneration merits further study.


Microglia , Retinal Degeneration , Animals , Humans , Mice , Microglia/metabolism , Retina/pathology , Retinal Degeneration/pathology , Ubiquitin-Protein Ligases/metabolism , Ubiquitins/metabolism
9.
Sci Rep ; 14(1): 3380, 2024 02 09.
Article En | MEDLINE | ID: mdl-38336828

Optical coherence tomography (OCT) has become a key method for diagnosing and staging radiation retinopathy, based mainly on the presence of fluid in the central macula. A robust retinal layer segmentation method is required for identification of the specific layers involved in radiation-induced pathology in individual eyes over time, in order to determine damage driven by radiation injury to the microvessels and to the inner retinal neurons. Here, we utilized OCT, OCT-angiography, visual field testing, and patient-specific dosimetry models to analyze abnormal retinal layer thickening and thinning relative to microvessel density, visual function, radiation dose, and time from radiotherapy in a cross-sectional cohort of uveal melanoma patients treated with 125I-plaque brachytherapy. Within the first 24 months of radiotherapy, we show differential thickening and thinning of the two inner retinal layers, suggestive of microvessel leakage and neurodegeneration, mostly favoring thickening. Four out of 13 eyes showed decreased inner retinal capillary density associated with a corresponding normal inner retinal thickness, indicating early microvascular pathology. Two eyes showed the opposite: significant inner retinal layer thinning and normal capillary density, indicating early neuronal damage preceding a decrease in capillary density. At later time points, inner retinal thinning becomes the dominant pathology and correlates significantly with decreased vascularity, vision loss, and dose to the optic nerve. Stable multiple retinal layer segmentation provided by 3D graph-based methods aids in assessing the microvascular and neuronal response to radiation, information needed to target therapeutics for radiation retinopathy and vision loss.


Radiation Injuries , Retinal Degeneration , Retinal Neurons , Humans , Visual Field Tests , Tomography, Optical Coherence/methods , Cross-Sectional Studies , Retina/diagnostic imaging , Retina/pathology , Retinal Neurons/pathology , Retinal Degeneration/pathology , Radiation Injuries/etiology , Radiation Injuries/pathology
10.
Acta Neuropathol Commun ; 12(1): 19, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38303097

Excitotoxicity from the impairment of glutamate uptake constitutes an important mechanism in neurodegenerative diseases such as Alzheimer's, multiple sclerosis, and Parkinson's disease. Within the eye, excitotoxicity is thought to play a critical role in retinal ganglion cell death in glaucoma, diabetic retinopathy, retinal ischemia, and optic nerve injury, yet how excitotoxic injury impacts different retinal layers is not well understood. Here, we investigated the longitudinal effects of N-methyl-D-aspartate (NMDA)-induced excitotoxic retinal injury in a rat model using deep learning-assisted retinal layer thickness estimation. Before and after unilateral intravitreal NMDA injection in nine adult Long Evans rats, spectral-domain optical coherence tomography (OCT) was used to acquire volumetric retinal images in both eyes over 4 weeks. Ten retinal layers were automatically segmented from the OCT data using our deep learning-based algorithm. Retinal degeneration was evaluated using layer-specific retinal thickness changes at each time point (before, and at 3, 7, and 28 days after NMDA injection). Within the inner retina, our OCT results showed that retinal thinning occurred first in the inner plexiform layer at 3 days after NMDA injection, followed by the inner nuclear layer at 7 days post-injury. In contrast, the retinal nerve fiber layer exhibited an initial thickening 3 days after NMDA injection, followed by normalization and thinning up to 4 weeks post-injury. Our results demonstrated the pathological cascades of NMDA-induced neurotoxicity across different layers of the retina. The early inner plexiform layer thinning suggests early dendritic shrinkage, whereas the initial retinal nerve fiber layer thickening before subsequent normalization and thinning indicates early inflammation before axonal loss and cell death. These findings implicate the inner plexiform layer as an early imaging biomarker of excitotoxic retinal degeneration, whereas caution is warranted when interpreting the ganglion cell complex combining retinal nerve fiber layer, ganglion cell layer, and inner plexiform layer thicknesses in conventional OCT measures. Deep learning-assisted retinal layer segmentation and longitudinal OCT monitoring can help evaluate the different phases of retinal layer damage upon excitotoxicity.


Deep Learning , Retinal Degeneration , Rats , Animals , Retinal Degeneration/chemically induced , Retinal Degeneration/diagnostic imaging , Retinal Degeneration/pathology , Tomography, Optical Coherence/methods , N-Methylaspartate/toxicity , Rats, Long-Evans , Retina/pathology , Retinal Ganglion Cells/pathology , Nerve Fibers/pathology
11.
Transl Vis Sci Technol ; 13(2): 10, 2024 02 01.
Article En | MEDLINE | ID: mdl-38349778

Purpose: Geographic atrophy (GA) is an advanced form of dry age-related macular degeneration with multifactorial etiology and no well-established treatment. A model recapitulating the hallmarks would serve as a key to understanding the underlying pathologic mechanisms better. In this report, we further characterized our previously reported subretinal sodium iodate model of GA. Methods: Retinal degeneration was induced in rats (6-8 weeks old) by subretinal injections of NaIO3 as described previously. Animals were sacrificed at 3, 8 and 12 weeks after injection and eyes were fixed or cryopreserved. Some choroids were processed as flatmounts while other eyes were cryopreserved, sectioned, and immunolabeled with a panel of antibodies. Finally, some eyes were prepared for transmission electron microscopic (TEM) analysis. Results: NaIO3 subretinal injection resulted in a well-defined focal area of retinal pigment epithelium (RPE) degeneration surrounded by viable RPE. These atrophic lesions expanded over time. RPE morphologic changes at the border consisted of hypertrophy, multilayering, and the possible development of a migrating phenotype. Immunostaining of retinal sections demonstrated external limiting membrane descent, outer retinal tubulation (ORT), and extension of Müller cells toward RPE forming a glial membrane in the subretinal space of the atrophic area. TEM findings demonstrated RPE autophagy, cellular constituents of ORT, glial membranes, basal laminar deposits, and defects in Bruch's membrane. Conclusions: In this study, we showed pathologic features of a rodent model resembling human GA in a temporal order through histology, immunofluorescence, and TEM analysis and gained insights into the cellular and subcellular levels of the GA-like phenotypes. Translational Relevance: Despite its acute nature, the expansion of atrophy and the GA-like border in this rat model makes it ideal for studying disease progression and provides a treatment window to test potential therapeutics for GA.


Geographic Atrophy , Retinal Degeneration , Humans , Rats , Animals , Retina , Retinal Pigment Epithelium/pathology , Iodates , Retinal Degeneration/chemically induced , Retinal Degeneration/pathology
12.
Int J Mol Sci ; 25(4)2024 Feb 15.
Article En | MEDLINE | ID: mdl-38396985

Retinitis pigmentosa (RP) is a retinal degenerative disease associated with a diversity of genetic mutations. In a natural progression study (NPS) evaluating the molecular changes in Royal College of Surgeons (RCS) rats using lipidomic profiling, RNA sequencing, and gene expression analyses, changes associated with retinal degeneration from p21 to p60 were evaluated, where reductions in retinal ALOX15 expression corresponded with disease progression. This important enzyme catalyzes the formation of specialized pro-resolving mediators (SPMs) such as lipoxins (LXs), resolvins (RvDs), and docosapentaenoic acid resolvins (DPA RvDs), where reduced ALOX15 corresponded with reduced SPMs. Retinal DPA RvD2 levels were found to correlate with retinal structural and functional decline. Retinal RNA sequencing comparing p21 with p60 showed an upregulation of microglial inflammatory pathways accompanied by impaired damage-associated molecular pattern (DAMP) clearance pathways. This analysis suggests that ALXR/FPR2 activation can ameliorate disease progression, which was supported by treatment with an LXA4 analog, NAP1051, which was able to promote the upregulation of ALOX12 and ALOX15. This study showed that retinal inflammation from activated microglia and dysregulation of lipid metabolism were central to the pathogenesis of retinal degeneration in RP, where ALXR/FPR2 activation was able to preserve retinal structure and function.


Retinal Degeneration , Retinitis Pigmentosa , Surgeons , Humans , Rats , Animals , Retinal Degeneration/pathology , Arachidonate 15-Lipoxygenase/genetics , Arachidonate 15-Lipoxygenase/metabolism , Retina/metabolism , Retinitis Pigmentosa/metabolism , Disease Progression , Disease Models, Animal
13.
Int J Mol Sci ; 25(3)2024 Jan 28.
Article En | MEDLINE | ID: mdl-38338908

Neurons build vast gap junction-coupled networks (GJ-nets) that are permeable to ions or small molecules, enabling lateral signaling. Herein, we investigate (1) the effect of blinding diseases on GJ-nets in mouse retinas and (2) the impact of electrical stimulation on GJ permeability. GJ permeability was traced in the acute retinal explants of blind retinal degeneration 1 (rd1) mice using the GJ tracer neurobiotin. The tracer was introduced via the edge cut method into the GJ-net, and its spread was visualized in histological preparations (fluorescent tagged) using microscopy. Sustained stimulation was applied to modulate GJ permeability using a single large electrode. Our findings are: (1) The blind rd1 retinas displayed extensive intercellular coupling via open GJs. Three GJ-nets were identified: horizontal, amacrine, and ganglion cell networks. (2) Sustained stimulation significantly diminished the tracer spread through the GJs in all the cell layers, as occurs with pharmaceutical inhibition with carbenoxolone. We concluded that the GJ-nets of rd1 retinas remain coupled and functional after blinding disease and that their permeability is regulatable by sustained stimulation. These findings are essential for understanding molecular signaling in diseases over coupled networks and therapeutic approaches using electrical implants, such as eliciting visual sensations or suppressing cortical seizures.


Retinal Degeneration , Animals , Mice , Retinal Degeneration/therapy , Retinal Degeneration/pathology , Retina/pathology , Gap Junctions , Electric Stimulation , Permeability
14.
Transl Vis Sci Technol ; 13(1): 18, 2024 01 02.
Article En | MEDLINE | ID: mdl-38241039

Purpose: Canine models of inherited retinal degeneration are used for proof of concept of emerging gene and cell-based therapies that aim to produce functional restoration of cone-mediated vision. We examined functional magnetic resonance imaging (MRI) measures of the postretinal response to cone-directed stimulation in wild-type (WT) dogs, and in three different retinal disease models. Methods: Temporal spectral modulation of a uniform field of light around a photopic background was used to target the canine L/M (hereafter "L") and S cones and rods. Stimuli were designed to separately target the postreceptoral luminance (L+S) and chrominance (L-S) pathways, the rods, and all photoreceptors jointly (light flux). These stimuli were presented to WT, and mutant PDE6B-RCD1, RPGR-XLPRA2, and NPHP5-CRD2 dogs during pupillometry and functional MRI (fMRI). Results: Pupil responses in WT dogs to light flux, L+S, and rod-directed stimuli were consistent with responses being driven by cone signals alone. For WT animals, both luminance and chromatic (L-S) stimuli evoked fMRI responses in the lateral geniculate nucleus or visual cortex; RCD1 animals with predominant rod loss had similar responses. Responses to cone-directed stimulation were reduced in XLPRA2 and absent in CRD2. NPHP5 gene augmentation restored the cortical response to luminance stimulation in a CRD2 animal. Conclusions: Cone-directed stimulation during fMRI can be used to measure the integrity of luminance and chrominance responses in the dog visual system. The NPHP5-CRD2 model is appealing for studies of recovered cone function. Translational Relevance: fMRI assessment of cone-driven cortical response provides a tool to translate cell/gene therapies for vision restoration.


Retinal Degeneration , Retinal Rod Photoreceptor Cells , Dogs , Animals , Retinal Rod Photoreceptor Cells/pathology , Retinal Rod Photoreceptor Cells/physiology , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Retina/diagnostic imaging , Vision, Ocular , Retinal Degeneration/pathology
15.
EMBO Mol Med ; 16(1): 4-7, 2024 Jan.
Article En | MEDLINE | ID: mdl-38177529

In the April issue of this Journal, Boffa and coworkers put forward a new therapeutic approach for Gyrate Atrophy of the Choroid and Retina (GACR; OMIM 258870) (Boffa et al, 2023). The authors propose to apply gene therapy to the liver for GACR, a metabolic disease primarily affecting eyesight due to retinal degeneration. Their vision is enthusiastically supported by a News and Views comment in the same issue (Seker Yilmaz and Gissen, 2023). However, based on disease pathology, patient's needs, ethical considerations, therapeutic developmental time lines, and current state of the art of gene therapy for liver and eye, we have a different view on this issue: We argue below that local treatment of the eye is the preferred option for GACR.


Gyrate Atrophy , Retinal Degeneration , Humans , Gyrate Atrophy/genetics , Gyrate Atrophy/pathology , Gyrate Atrophy/therapy , Retina/pathology , Choroid , Retinal Degeneration/therapy , Retinal Degeneration/pathology , Atrophy/pathology
16.
Br J Ophthalmol ; 108(4): 558-565, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-37080590

BACKGROUND/AIMS: The purpose of this study was to investigate retinal structure in detail of subjects with autosomal-dominant (AD) and autosomal-recessive (AR) PROM1-associated retinal degeneration (PROM1-RD), study design: institutional, cross-sectional study. METHODS: Four eyes from four subjects (three with AD and one with AR) PROM1-RD were investigated by ophthalmic examination including best-corrected visual acuity (BCVA) and multimodal retinal imaging: fundus autofluorescence (FAF), spectral-domain optical coherence tomography (SD-OCT) and adaptive optics scanning light ophthalmoscopy. Quantitative assessment of atrophic lesions determined by FAF, thickness of individual retinal layers and cone photoreceptor quantification was performed. RESULTS: BCVA ranged from 20/16 to 20/200. Initial pathological changes included the presence of hyperautofluorescent spots on FAF imaging, while later stages demonstrated discrete areas of atrophy. In all patients, thinning of the outer retinal layers on SD-OCT with varying degrees of atrophy could be detected depending on disease-causing variants and age. Cone density was quantified both in central and/or at different eccentricities from the fovea. Longitudinal assessments were possible in two patients. CONCLUSIONS: PROM1-RD comprises a wide range of clinical phenotypes. Depending on the stage of disease, the cone mosaic in PROM1-RD is relatively preserved and can potentially be targeted by cone-directed interventions.


Retinal Degeneration , Humans , Retinal Degeneration/diagnosis , Retinal Degeneration/genetics , Retinal Degeneration/pathology , Cross-Sectional Studies , Visual Acuity , Retina/pathology , Retinal Cone Photoreceptor Cells/pathology , Ophthalmoscopy/methods , Tomography, Optical Coherence/methods , Fluorescein Angiography , Atrophy , AC133 Antigen
17.
Glia ; 72(3): 504-528, 2024 Mar.
Article En | MEDLINE | ID: mdl-37904673

Retinal degeneration, characterized by Müller cell gliosis and photoreceptor apoptosis, is considered an early event in diabetic retinopathy (DR). Our previous study proposed that GMFB may mediate diabetic retinal degeneration. This study identified GMFB as a sensitive and functional gliosis marker for DR. Compared to the wild type (WT) group, Gmfb knockout (KO) significantly improved visual function, attenuated gliosis, reduced the apoptosis of neurons, and decreased the mRNA levels of tumor necrosis factor α (Tnf-α) and interleukin-1ß (Il-1ß) in diabetic retinas. Tgf-ß3 was enriched by hub genes using RNA sequencing in primary WT and KO Müller cells. Gmfb KO significantly upregulated the transforming growth factor (TGF)-ß3 protein level via the AKT pathway. The protective effect of TGF-ß3 in the vitreous resulted in significantly improved visual function and decreased the number of apoptotic cells in the diabetic retina. The protection of Gmfb KO in primary Müller cells against high glucose (HG)-induced photoreceptor apoptosis was partially counteracted by TGF-ß3 antibody and administration of TGFBR1/2 inhibitors. Nuclear receptor subfamily 3 group C member 1 (NR3C1) binds to the promoter region of Gmfb and regulates Gmfb mRNA at the transcriptional level. NR3C1 was increased in the retinas of early diabetic rats but decreased in the retinas of late diabetic rats. N'-[(1E)-(3-Methoxyphenyl)Methylene]-3-Methyl-1H-Pyrazole-5-Carbohydrazide (DS-5) was identified as an inhibitor of GMFB, having a protective role in DR. We demonstrated that GMFB/AKT/TGF-ß3 mediated early diabetic retinal degeneration in diabetic rats. This study provides a novel therapeutic strategy for treating retinal degeneration in patients with DR.


Diabetes Mellitus, Experimental , Diabetic Retinopathy , Retinal Degeneration , Humans , Rats , Animals , Retinal Degeneration/pathology , Ependymoglial Cells/metabolism , Streptozocin/toxicity , Proto-Oncogene Proteins c-akt/metabolism , Transforming Growth Factor beta3/adverse effects , Transforming Growth Factor beta3/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Gliosis/pathology , Retina/metabolism , Diabetic Retinopathy/pathology , RNA, Messenger/metabolism
18.
Exp Eye Res ; 239: 109772, 2024 Feb.
Article En | MEDLINE | ID: mdl-38158173

Sodium iodate (NaIO3) is a commonly used model for age-related macular degeneration (AMD), but its rapid and severe induction of retinal pigment epithelial (RPE) and photoreceptor degeneration can lead to the premature dismissal of potentially effective therapeutics. Additionally, little is known about how sex and age affect the retinal response to NaIO3. This study aims to establish a less severe yet reproducible regimen by testing low doses of NaIO3 while considering age- and sex-related effects, enabling a broader range of therapeutic evaluations. In this study, young (3-5 months) and old (18-24 months) male and female C57Bl/6J mice were given an intraperitoneal (IP) injection of 15, 20, or 25 mg/kg NaIO3. Damage assessment one week post-injection included in vivo imaging, histological examination, and qRT-PCR analysis. The results revealed that young mice showed no damage at 15 mg/kg IP NaIO3, with varying degrees of damage observed at 20 mg/kg. At 25 mg/kg, most young mice displayed widespread retinal damage, with females exhibiting less retinal thinning than males. In contrast, older mice at 20 and 25 mg/kg displayed a more patchy degeneration pattern, outer retinal undulations, and greater variability in degeneration than the young mice. The most effective model for minimizing damage while maintaining consistency utilizes young female mice injected with 25 mg/kg NaIO3. The observed sex- and age-related differences underscore the importance of considering these variables in research, aligning with the National Institutes of Health's guidance. While the model does not fully replicate the complexity of AMD, these findings enhance its utility as a valuable tool for testing RPE/photoreceptor protective or replacement therapies.


Macular Degeneration , Retinal Degeneration , Female , Male , Mice , Animals , Retina/pathology , Retinal Degeneration/chemically induced , Retinal Degeneration/pathology , Macular Degeneration/drug therapy , Macular Degeneration/pathology , Iodates/toxicity , Mice, Inbred C57BL , Retinal Pigment Epithelium/pathology , Disease Models, Animal
19.
J Genet Genomics ; 51(2): 208-221, 2024 Feb.
Article En | MEDLINE | ID: mdl-38157933

Inherited retinal dystrophies (IRDs) are major causes of visual impairment and irreversible blindness worldwide, while the precise molecular and genetic mechanisms are still elusive. N6-methyladenosine (m6A) modification is the most prevalent internal modification in eukaryotic mRNA. YTH domain containing 2 (YTHDC2), an m6A reader protein, has recently been identified as a key player in germline development and human cancer. However, its contribution to retinal function remains unknown. Here, we explore the role of YTHDC2 in the visual function of retinal rod photoreceptors by generating rod-specific Ythdc2 knockout mice. Results show that Ythdc2 deficiency in rods causes diminished scotopic ERG responses and progressive retinal degeneration. Multi-omics analysis further identifies Ppef2 and Pde6b as the potential targets of YTHDC2 in the retina. Specifically, via its YTH domain, YTHDC2 recognizes and binds m6A-modified Ppef2 mRNA at the coding sequence and Pde6b mRNA at the 5'-UTR, resulting in enhanced translation efficiency without affecting mRNA levels. Compromised translation efficiency of Ppef2 and Pde6b after YTHDC2 depletion ultimately leads to decreased protein levels in the retina, impaired retinal function, and progressive rod death. Collectively, our finding highlights the importance of YTHDC2 in visual function and photoreceptor survival, which provides an unreported elucidation of IRD pathogenesis via epitranscriptomics.


Photoreceptor Cells, Vertebrate , Retinal Degeneration , Animals , Humans , Mice , Cyclic Nucleotide Phosphodiesterases, Type 6/genetics , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/pathology , Retinal Degeneration/genetics , Retinal Degeneration/metabolism , Retinal Degeneration/pathology , RNA Helicases/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
20.
Surv Ophthalmol ; 69(1): 85-92, 2024.
Article En | MEDLINE | ID: mdl-37652188

Although there have been numerous innovations in the management of retinal detachment (RD) over the past decades, there is still limited understanding of the pathophysiological processes that take place before and after repair. Summarizing key concepts using animal studies may allow for a better assessment of common pre- and postoperative microstructural abnormalities in RD. We performed a systematic literature review on Ovid MEDLINE, EMBASE, and Cochrane Controlled Register of Trials from January 1968 to January 2022, searching animal or human studies reporting retinal histologic changes following primary or induced RD. Thirty-two studies were included. Main cellular events were summarized: photoceptor apoptosis occurs as early as 12 hours after RD and, although most cells survive, there is extensive remodeling. Outer segments progressively degenerate, while inner segments are reorganized. Rod and cone opsins are redistributed, and rod axons retract while cones undergo changes in shape. Second- and third-order neurons rearrange their dendritic processes, and Müller cells become hypertrophic, growing into the subretinal space. Finally, retinal pigment epithelium cells undergo a change in their morphology. Acknowledging critical morphologic changes following RD is crucial in understanding why anatomical and functional outcomes can vary. Insights from histological studies, together with high-resolution imaging, may be key in identifying novel biomarkers in RD.


Retinal Degeneration , Retinal Detachment , Animals , Humans , Retinal Detachment/surgery , Retina/pathology , Retinal Cone Photoreceptor Cells/pathology , Retinal Degeneration/pathology
...